BACKPAPER EXAMINATION ALGEBRAIC GEOMETRY

Answer ANY SIX questions, all questions carry equal marks. Assume that the base field k, in all questions below, is algebraically closed. Time: 3 hours. Total Marks: 100

- (1) Let $C = V(F) \subset \mathbb{A}_k^2$ be an irreducible plane affine curve (where $F \in k[x, y]$) and let $P \in C$ be a point of C. Define the local ring $\mathcal{O}_P(C)$ of C at P. Define the notion of a discrete valuation ring. Show that if P is a simple (or smooth) point of C, then $\mathcal{O}_P(C)$ is a discrete valuation ring.
- (2) State Bezout's Theorem and define all the terms that appear in the statement. Verify the statement of Bezout's Theorem for the two curves $F(x, y, z) = y^2 z x(x-z)(x+z)$ and $G(x, y, z) = y^2 z x^3$.
- (3) Define the notion of a line in \mathbb{P}_k^2 . Show that there is a bijection between the set of all points of \mathbb{P}_k^2 and the set of all lines in \mathbb{P}_k^2 .
- (4) Let P_1, P_2, P_3 and Q_1, Q_2, Q_3 be two collections, each consisting of three points of \mathbb{P}^2_k , such that neither collection of three points lie on a line. Prove that there exists a projective change of coordinates T such that $T(P_i) = Q_i$ for i = 1, 2, 3. Let L_1, L_2, L_3 and M_1, M_2, M_3 be two collections, each consisting of three lines of \mathbb{P}^2_k , such that neither collection of three lines pass through a common point. Show that there exists a projective change of coordinates S such that $S(L_i) = M_i$ for i = 1, 2, 3.
- (5) Prove that up to projective equivalence, there is only one irreducible conic in \mathbb{P}^2_k (with equation $y^2 = xz$). Show that this curve is nonsingular.
- (6) Let $C \subset \mathbb{A}^2_k$ be an affine plane curve, let P be any point on C (not necessarily, a simple point). When is a line L called a tangent line to C at P? Define the notion of the multiplicity $m_P(C)$ of C at P? Show that a line L is tangent to C at P, if and only if, $I_P(C, L) > m_P(C)$.
- (7) Define the notions of an irreducible and a nonsingular plane projective curve. Show that any nonsingular plane projective curve is irreducible. Is the converse true?
- (8) Let $f : X \to Y$ be a morphism of affine varieties. Define the induced k-algebra homomorphism of coordinate rings $f^* : \Gamma(Y) \to \Gamma(X)$. Show that f(X) is dense in Y, if and only if, $f^* : \Gamma(Y) \to \Gamma(X)$ is injective.
- (9) Let W be the set of all conics in \mathbb{P}_k^2 . Show that W can be identified with \mathbb{P}_k^5 . Let P_1, P_2, P_3, P_4 be four distinct points of \mathbb{P}^2 . Let V be the subset of all conics in \mathbb{P}_k^2 passing through these four points. Show that V is a linear subspace (i.e., defined by homogenous linear equations) of $W(=\mathbb{P}_k^5)$. Show that $\dim(V) = 2$ if these four points lie on a line, and $\dim(V) = 1$ otherwise.
- (10) Let $C \subset \mathbb{P}^2_k$ be a nonsingular projective plane curve of degree 3, let $O \in C$ be a fixed (but arbitrary) point. Describe the group law on the points of C (such that O is the identity). What is the inverse of a point $P \in C$ with respect to this group law?
- (11) Define the notion of birational equivalence between two varieties. Show that $\mathbb{P}^1_k \times \mathbb{P}^1_k$ and \mathbb{P}^2_k are birationally equivalent but not isomorphic.