BACKPAPER EXAMINATION ALGEBRAIC GEOMETRY

Answer ANY SIX questions, all questions carry equal marks. Assume that the base field k, in all questions below, is algebraically closed. Time: 3 hours. Total Marks: 100
(1) Let $C=V(F) \subset \mathbb{A}_{k}^{2}$ be an irreducible plane affine curve (where $F \in k[x, y]$) and let $P \in C$ be a point of C. Define the local ring $\mathcal{O}_{P}(C)$ of C at P. Define the notion of a discrete valuation ring. Show that if P is a simple (or smooth) point of C, then $\mathcal{O}_{P}(C)$ is a discrete valuation ring.
(2) State Bezout's Theorem and define all the terms that appear in the statement. Verify the statement of Bezout's Theorem for the two curves $F(x, y, z)=y^{2} z-$ $x(x-z)(x+z)$ and $G(x, y, z)=y^{2} z-x^{3}$.
(3) Define the notion of a line in \mathbb{P}_{k}^{2}. Show that there is a bijection between the set of all points of \mathbb{P}_{k}^{2} and the set of all lines in \mathbb{P}_{k}^{2}.
(4) Let P_{1}, P_{2}, P_{3} and Q_{1}, Q_{2}, Q_{3} be two collections, each consisting of three points of \mathbb{P}_{k}^{2}, such that neither collection of three points lie on a line. Prove that there exists a projective change of coordinates T such that $T\left(P_{i}\right)=Q_{i}$ for $i=1,2,3$. Let L_{1}, L_{2}, L_{3} and M_{1}, M_{2}, M_{3} be two collections, each consisting of three lines of \mathbb{P}_{k}^{2}, such that neither collection of three lines pass through a common point. Show that there exists a projective change of coordinates S such that $S\left(L_{i}\right)=M_{i}$ for $i=1,2,3$.
(5) Prove that upto projective equivalence, there is only one irreducible conic in \mathbb{P}_{k}^{2} (with equation $y^{2}=x z$). Show that this curve is nonsingular.
(6) Let $C \subset \mathbb{A}_{k}^{2}$ be an affine plane curve, let P be any point on C (not necessarily, a simple point). When is a line L called a tangent line to C at P ? Define the notion of the multiplicity $m_{P}(C)$ of C at P ? Show that a line L is tangent to C at P, if and only if, $I_{P}(C, L)>m_{P}(C)$.
(7) Define the notions of an irreducible and a nonsingular plane projective curve. Show that any nonsingular plane projective curve is irreducible. Is the converse true?
(8) Let $f: X \rightarrow Y$ be a morphism of affine varieties. Define the induced k-algebra homomorphism of coordinate rings $f^{*}: \Gamma(Y) \rightarrow \Gamma(X)$. Show that $f(X)$ is dense in Y, if and only if, $f^{*}: \Gamma(Y) \rightarrow \Gamma(X)$ is injectve.
(9) Let W be the set of all conics in \mathbb{P}_{k}^{2}. Show that W can be identified with \mathbb{P}_{k}^{5}. Let $P_{1}, P_{2}, P_{3}, P_{4}$ be four distinct points of \mathbb{P}^{2}. Let V be the subset of all conics in \mathbb{P}_{k}^{2} passing through these four points. Show that V is a linear subspace (i.e., defined by homogenous linear equations) of $W\left(=\mathbb{P}_{k}^{5}\right)$. Show that $\operatorname{dim}(V)=2$ if these four points lie on a line, and $\operatorname{dim}(V)=1$ otherwise.
(10) Let $C \subset \mathbb{P}_{k}^{2}$ be a nonsingular projective plane curve of degree 3 , let $O \in C$ be a fixed (but arbitrary) point. Describe the group law on the points of C (such that O is the identity). What is the inverse of a point $P \in C$ with respect to this group law?
(11) Define the notion of birational equivalence between two varieties. Show that $\mathbb{P}_{k}^{1} \times$ \mathbb{P}_{k}^{1} and \mathbb{P}_{k}^{2} are birationally equivalent but not isomorphic.

